二氧化碳储能技术研究现状与发展前景

mbti 0 30

文 | 储能科学与技术

作者:郝佳豪 1,2 越云凯 1,3 张家俊 1 杨俊玲 1 李晓琼 1 宋衍昌 1,2 张振涛 1,3

单位:1. 中国科学院理化技术研究所低温工程学重点实验室; 2. 中国科学院大学; 3. 北京博睿鼎能动力科技有限公司

二氧化碳储能技术研究现状与发展前景

DOI: 10.19799/j.cnki.2095-

4239.2022.0199

摘 要二氧化碳储能(CES)技术是基于压缩空气储能(CAES)和Brayton发电循环的一种新型物理储能技术,具有储能密度大、运行寿命长、系统设备紧凑等优势,具有较好的发展和应用前景。

本文介绍了典型二氧化碳储能系统的工作原理和基本特征,指出了系统循环效率(RTE)、储能密度(ESD)的计算方式和评价效果;通过对近期相关国内外文献的讨论,结合二氧化碳储能技术的发展进程,重点梳理了二氧化碳电热储能(TE-CES)、跨临界二氧化碳储能(TC-CES)、超临界二氧化碳储能(SC-CES)、液态二氧化碳储能(LCES)和耦合其他能源系统的二氧化碳储能系统的研究进展,指出了不同系统的优势、不足及适应性应用场景;总结了二氧化碳储能的研究方向、关键技术和主要挑战,最后分析了二氧化碳储能技术在技术研发和面向多场景应用两个层面上的发展前景。

综合分析表明,目前二氧化碳储能技术相关研究方兴未艾,且较多为理论研究,还需要进一步朝着系统优化设计、实验验证和产业化应用方向发展,二氧化碳储能技术有望在未来电力储能市场中获得较大发展空间。

随着生态环境破坏与资源约束的矛盾日益突出,大力开发可再生能源已成为解决我国能源安全和环境污染问题的主要手段。截至2021年底,我国可再生能源发电装机达到10.63亿千瓦,占总发电装机容量的44.8%。其中,风电和光伏发电装机分别达到3.28 亿千瓦和3.06 亿千瓦。相关机构预测,到2050年,可再生能源在我国能源体系中占比有望达到78.0%。但可再生能源特别是风电和光伏发电具有明显的波动性、周期性和不确定性等不利因素,其大规模并网不仅给电网系统带来前所未有的挑战,也造成了巨大的能量浪费。因此,开发规模化高效储能系统已经成为学界和社会的重要共识。储能系统可以周期性储存多余电量,并在用电高峰时进行释能发电,不但是实现可再生能源发电规模化接入、平滑持续电力输出、调峰调频的重要手段,而且可以提高电网输配电侧的整体效率、安全性和经济性。

目前,已经实现商业应用的兆瓦级、长时间储能技术主要有抽水蓄能和压缩空气储能。其中,抽水蓄能(pumped hydro storage,PHS)已装机比例最大,应用较为成熟,但存在着选址困难、建设周期长、初期投资大、破坏生态环境等客观问题。压缩空气储能(compressed air energy storage,CAES)具有规模大、灵活性强等特点,一般循环效率在40%~70%之间,被认为具有较大的发展潜力。传统CAES系统需要外加燃气补热装置,且一般借助地下洞穴、盐穴、岩层等特殊的地理环境储存,系统对储存要求较高。近年来,国内外学者先后提出了先进压缩空气储能系统(AA-CAES)、超临界压缩空气储能系统(SC-CAES)、液态空气储能系统(LAES)等第二代压缩空气储能系统,一定条件下摈弃了地理条件限制,减少了化石燃料的使用,对环境更为友好。但是,AA-CAES系统依赖高压容器或地下储气库,导致其储能密度相对较低(一般为1.5~10 kWh/m 3 )、主要设备体型较大;SC-CAES系统和LAES系统存在超临界空气蓄冷液化过程,且空气液化温度一般为-196 ℃,导致系统冷㶲损耗较大,从而影响其整体性能的进一步提升。

为了进一步提高储能系统的储能效率与能量密度,相关学者提出了以CO 2 为工质的二氧化碳储能(carbon dioxide energy storage,CES)系统,由于CO 2 临界点(7.39 MPa和31.4 ℃)相对空气(3.77 MPa和-140.5 ℃)容易达到,无毒、不易燃、安全等级为A1,且超临界二氧化碳(S-CO 2 )具有优良的热力学性质:黏度小、密度大、导热性能好,系统寄生能耗也相对较低。基于常规储能设计参数,表1展示了不同压力和对应温度下空气和CO 2 的密度大小,可以看出,相同状态和压力下CO 2 储存密度均大于空气,其中液态储存时最高,从而使得CES系统具有较高的储能潜力。

表1 空气和CO 2 储存密度对比

本文首先介绍了CES系统的工作原理及主要特点,指出了CES系统的主要性能评价指标,然后基于CES系统的发展历程,分析了不同CES系统方案的技术特征和研究现状,总结了CES技术的关键技术、主要方向和技术挑战,最后展望了CES技术的发展前景。

1 二氧化碳储能系统概述

1.1 工作原理

二氧化碳储能是在压缩空气储能和Brayton循环的基础上提出的,以CO 2 作为储能系统工作介质,通过多级绝热压缩、等压加热、多级绝热膨胀和等压冷却等过程实现,但由于CO 2 工质特殊性,系统为封闭式循环,系统设备和参数设置也和压缩空气储能有较大差异。

图1展示了二氧化碳储能系统的工作原理,系统主要由高、低压储罐,压缩机,透平和蓄热蓄冷单元组成;蓄热蓄冷单元主要包括再冷器、再热器、蓄热罐和蓄冷罐。其工作原理可分为储能阶段和释能阶段两个过程。储能时,低压储罐中的低压液态CO 2 经过蓄冷换热器吸热气化,再经过(多级)压缩机压缩至超临界状态,同时通过再冷器吸收压缩热并通过蓄热介质将热量储存在蓄热罐中,最后将超临界状态CO 2 储存在高压储罐中,即将电能以热能和势能形式储存;释能时,高压储罐中的超临界CO 2 经过再热器升温,再进入透平中推动透平发电,同时再将再热器出口的低温蓄热介质冷量储存在蓄冷罐中,末级透平出口的CO 2 再经过冷却器和蓄冷换热器冷却至液化状态,最后储存在低压储罐,即将热能和势能转化为电能输出。

图1二氧化碳储能系统原理图

CES系统一般采用压缩热回收利用代替传统CAES系统中的燃料补燃,避免了对化石能源的依赖;同时设置压缩机与透平分布,从而能够灵活控制系统储能、调节释能工况,减少机组启停切换时间;CES系统中多采用多级压缩和多级膨胀,最大储能压力可达20~25 MPa,同时通过中间冷却和中间再热使压缩机和透平近等温运行,提高了系统循环效率;CES系统可根据可再生能源消纳、电网调峰调频、用户侧削峰填谷等应用场景,满足数小时甚至数十天的储能周期需求,且具有较长运行寿命。

1.2 主要性能评价指标

对于压缩气体储能系统,最能反映系统储能特性的评价指标主要有系统循环效率(round trip efficiency,RTE)和储能密度(energy storage density,ESD)。

RTE反映了储能系统同一周期内储能和释能过程的能量转化与平衡关系。如式(1)所示,RTE为储能时系统输入电能和释能时系统输出电能之比,与压缩机、透平功率和储释能时间相关。如果系统设置补燃设备,还需要考虑消耗热能的输入,一般按燃气按折合系统0.39考虑。

二氧化碳储能技术研究现状与发展前景

(1)

ESD反映了储能系统储能工质单位储存容积时储能容量的大小,也可称为单位体积发电量(energy generated per unit volume,EVR)。如式(2)所示,ESD为系统输出电能和储存设备总容积之比,由于超临界CO 2 和液态CO 2 密度远大于空气,所以二氧化碳储能系统的储能密度具有较大优势,使得系统工质储存容积和设备成本显著降低。

(2)

式(1)、(2)中, W in 为系统输入电能; W out 为系统输出电能; V H 为高压储罐容积; V L 为低压储罐容积。

2 二氧化碳储能技术研究现状

2.1 二氧化碳电热储能(TE-CES)系统

将CO 2 作为工质并应用于储能系统最早是2012年由瑞士洛桑埃尔科尔理工大学的Morandin教授提出,他设计了一种基于热水蓄热、冰浆蓄冷的二氧化碳电热储能(thermo-electrical carbon dioxide energy storage,TE-CES)系统,并基于换热器网络编写了系统优化算法。如图2所示,该系统的工作原理是:在储能过程中,电能驱动热泵系统压缩机将CO 2 压缩至超临界态,并将CO 2 内能通过蓄热罐进行储存,即将电能以热能形式储存;在释能过程中,CO 2 吸收蓄热器热能,再进入膨胀机做功,即将热能转化为电能输出。

图2二氧化碳电热储能系统原理图

二氧化碳电热储能系统在蓄热端进行显热交换,CO 2 处于单相区;在蓄冷端进行潜热交换,CO 2 处于两相区。因此,系统换热过程具有较好的热匹配性。由于液态水的高热容、高流动性特性,且成本极低,相比于其他常见蓄热介质(表2),在储能系统蓄换热过程中被广泛使用。

表2 蓄热介质性能对比

基于上述系统,韩国学者Kim等分析了压缩机、膨胀机效率、压力比、冷热罐流量等参数对系统循环效率的影响,发现热罐中水的质量和温度越高,等温TES系统的循环效率越高,系统最大循环效率可达74.5%;等温膨胀的压力比可以在最高循环温度下充分提高,且内部耗散造成的㶲损失低于等熵情况。瑞士苏黎世Ewz公司于2013年建设了Auwiesen热电储能电站。该电站基于已有Auwiesen(220 kV/150 kV)和 Aubrugg(150 kV/22 kV)两座变电站,提供电力并网和生物质废热,同时可通过热力管线供热。Auwiesen热电储能电站储能容量1 MW,储能时间6 h,释能时间3 h,最大循环效率40%~45%,二氧化碳循环压力在3~14 MPa,储热温度最高120 ℃,储热罐总容量达上千立方米。

2.2 跨临界二氧化碳储能(TC-CES)和超临界二氧化碳(SC-CES)储能系统

基于压缩空气储能系统的研究与应用,中国科学院工程热物理研究所杨科等提出了以CO 2 为工质的压缩二氧化碳储能系统。根据系统透平出口压力,可具体分为跨临界二氧化碳储能(transcritical carbon dioxide energy storage,TC-CES)和超临界二氧化碳(supercritical carbon dioxide energy storage systems,SC-CES)储能系统,若透平出口压力低于临界压力称为TC-CES系统,若高于临界压力则称为SC-CES系统。目前,关于这两种系统的研究相对较多,主要研究机构包括中科院工程热物理所、华北电力大学、西安交通大学、华中科技大学等,但主要还停留在系统理论设计和性能分析阶段。

北京大学Zhang等研究了基于热水蓄热的跨临界和超临界压缩二氧化碳储能系统。如图3所示,这两种系统本质上没有区别,TC-CES系统相较于SC-CES系统另外设计了压缩前预热器,目的是使低压储罐中的液态CO 2 在进入压缩机前完全气化,而SC-CES系统低压储罐中CO 2 本身就处于超临界态,可直接进入压缩机。研究发现系统以1 MW释能功率输出时,跨临界运行CO 2 工质流量为38.52 kg/s,循环效率为60%,储能密度为2.6 kWh/m 3 ;超临界运行CO 2 工质流量为6.89 kg/s,循环效率为71%,㶲效率为71.38%,储能密度为23 kWh/m 3 。结合文献[ 21-22 ]的研究结果,图4对比了传统CAES、AA-CAES、TC-CES和SC-CES系统在释能功率均为1 MW工况下的循环效率和能量密度数据。可以发现,TC-CES的循环效率高于传统CAES,但略低于AA-CAES,其储能密度均高于传统CAES和AA-CAES;而SC-CES的循环效率最大,且其储能密度远高于其他三种系统。因此,虽然SC-CES比CAES系统额外增加了低压储存设备用于释能过程中透平存储出口CO 2 (对于SC-CES系统此时CO 2 仍处于超临界态),但由于其工质整体储存容积需求较低,所以仍具有较高的储能密度。

图3TC-CES系统和SC-CES系统原理图

图4不同CES和CAES系统性能对比

由于二氧化碳储能系统高压侧压力较大(一般为10~25MPa),因此对于高压侧储存容器提出了较严苛的要求,一般性钢制压力容器往往不能满足安全要求,并且为了满足系统释能工况稳定,压力容器设计时容积需要有相当部分的富裕量,这样就造成了较大的材料成本投入,影响二氧化碳储能系统的整体经济效益。因此,有学者提出结合二氧化碳封存技术,采用地下储库(硬岩穴、盐穴、废弃煤矿井、咸水层、海下等)储存高低压二氧化碳。

华北电力大学刘辉、何青等 、郝银萍分别对使用地下双储气室的二氧化碳储能系统进行了研究。其中,文献[ 25]提出了一种基于地下储气室的跨临界二氧化碳储能系统,如图5、6所示,系统分别以1700 m深和100 m深的地下咸水层作为高低压储气室,同时使用热泵系统储热,提高了储热温度。研究结果显示,RTE、储能效率及储热效率分别为66.00%、58.41%和46.11%,此外,探讨了压缩机和透平绝热效率对系统性能的影响规律,研究还验证了以水为蓄热介质时系统性能最佳。

图5TC-CES系统地下储气室

图6基于地下储气室的TC-CES系统原理图

2.3 液态二氧化碳储能(LCES)系统

针对跨临界、超临界二氧化碳储能系统需要耐高压储存设备且储能密度相对较低的问题,有学者提出一种液态二氧化碳储能(liquid carbon dioxide energy storage,LCES)系统,即将高压侧和低压侧CO 2 均以低压液态(0.5~1.0 MPa,-56~-40 ℃)形式储存,密度大于1 000 kg/m 3 ,极大地降低了存储压力,且不受地理条件限制,还可以显著降低压力容器加工制造成本,提高了二氧化碳储能系统在空旷的荒漠、高原等可再生能源聚集地区的运行安全性。此外,关于液态空气储能技术的研究也证实了液态工质储能系统在实际工程应用的可行性。

西安交通大学Wang等提出了一种结合ORC的液态二氧化碳储能系统。如图7所示,该系统由压缩机、透平、蓄热器、蓄冷器、储罐和液体泵组成。储能时:罐2中的液态CO 2 经过稳压阀和蓄冷器吸热气化,进入压缩机被压缩,然后通过蓄热器储存压缩热,再经过水冷液化储存到罐1中。释能时:罐1中的液态CO 2 通过液体泵增压,再进入蓄热器和透平吸热做功,然后经过蒸发器和蓄冷器冷却液化,回到罐1储存,温度可达-56 ℃,高于LAES系统液化温度,降低了系统冷损。研究结果显示,该系统的循环效率可达到56.64%左右,储能密度为36.12 kWh/m 3 ,高于AA-CAES系统和其他二氧化碳储能系统。

图7结合ORC的液态二氧化碳储能系统原理图

LCES系统在压缩后也可以采用节流阀或液体膨胀机通过节流效应进行液化,但由于节流过程仍有部分CO 2 不能液化,所以需要配置气液分离器并将气态CO 2 返回压缩机继续压缩液化,这种系统可以避免外设低温冷却系统。吴毅等设计的一种采用液态膨胀机的液态二氧化碳储能系统如图8所示,该系统在高压侧的储能过程和释能过程分别采用液体膨胀机和低温泵控制储能压力和释能压力。通过热力学分析和多目标优化,发现该系统最佳释能压力为18.3 MPa,最佳储能压力为11.7 MPa,对应系统储能效率为50.4%,储能密度为21.7 kWh/m 3 。但由于存在膨胀机功损失,意味着这个系统还有很大的改进潜力。

图8采用液体膨胀机的液态二氧化碳储能系统原理图

应当注意的是,虽然LCES系统解决了压力容器的加工制作和运行安全问题,提升了系统整体储能密度,但由于其一般需要将CO 2 冷却液化的换热量通过蓄热系统回收并用于膨胀过程中CO 2 的加热气化,所以引入了另一套较复杂的蓄热蓄冷系统;此外,低温液体泵功耗和低温CO 2 耗散也成为制约LCES系统循环效率的重要问题,因此LCES系统的循环效率一般略低于其他CES系统。

2.4 耦合其他能源系统的二氧化碳储能系统

二氧化碳储能系统不仅具备CAES系统的功能特性,可将风电、光电等间歇能源“拼接”起来,保障新能源的持续电力输出;还可以和CCS、液化天然气(LNG)等多种能源系统耦合,实现二氧化碳储能的多场景应用和效率提升。

文献[ 33]提出了一种利用太阳能光热系统补热的LCES系统,如图9所示,该系统在透平入口前引入额外的光热热源,在透平出口设置回热器回收400 ℃二氧化碳的余热,从而提高了透平进口温度。与常规LAES系统相比,该系统具有较高的循环效率和㶲效率。但需要注意的是,该系统需要控制太阳热量的波动以减小对LCES系统透平进口温度稳定性的影响。

图9利用太阳能光热系统补热的LCES系统原理图

基于CCS技术的快速发展,如何合理应用地下封存的CO 2 、降低CCS整体经济成本受到相关学者关注。文献[ 34]提出了一种结合废旧矿床存储二氧化碳的二氧化碳储能(CES-CCS)系统。如图10所示,该系统的工作原理是将电厂捕获的CO 2 经过多级压缩机压缩,当达到储能压力时,CO 2 存储过程停止,多余的CO 2 通过注入井进行地下封存或驱油,释能时CO 2 再进入多级透平做功发电,出口CO 2 通过废弃洞穴暂存。通过热力学分析和参数分析,该系统在储能压力为21.9 MPa时,最高RTE为53.75%,且在碳排放税不超过47美元/吨时具有一定经济优势。但是,该系统将CO 2 迁移当做理想渗流过程,在工程应用时需要更深入细致的地质勘探和模拟分析,所需要的应用场景也较难吻合。

图10CES-CCS系统原理图

此外,液化天然气(LNG)冷能利用也为LCES提供了一个较好的发展方向。由于LNG必须气化升温后才能供用户使用,LNG从-162 ℃升至常温能够释放约830 kJ/kg的冷能,然而目前LNG冷能浪费严重。因此,Zhao等提出了一种耦合LNG的LCES系统,如图11所示。该系统在常规LCES系统外加入LNG冷能利用子系统和燃烧子系统,采用LNG液化低压CO 2 ,加热后的LNG一部分供给用户,一部分进入燃烧室中燃烧,以提高透平进口温度。结果表明,该系统充电时间为2.02 h,恒压和变压放电时间为3.64 h和2.88 h,恒压模式下的循环效率为64.96%,而变压模式下的循环效率可达67.37%。该系统为解决我国东南沿海LNG冷能利用问题提供了有效方案,但由于过程中需要燃烧化石燃料,所以需要对系统整体净碳排放效果进行详细评估。

图11耦合LNG的LCES系统原理图

3 二氧化碳储能系统关键技术

作为一种较前沿的物理储能技术,二氧化碳储能在热力学循环构建理论、CO 2 临界转换特性、系统动态运行控制策略、关键设备设计开发和高性能材料选择等方面需要攻克的关键技术还有许多,也面临着诸如设备加工制造、系统应用等技术挑战,如表3所示。

表3 二氧化碳储能研究方向、关键技术和挑战

4 二氧化碳储能技术的发展前景

我国对压缩空气储能技术的研究虽然起步较晚,但随着国家政策支持和相关成果落地,已经实现了从技术追赶到技术领先的重大转变。同时,二氧化碳储能作为一种新型压缩气体储能技术,凭借其储能工质物性优良、系统性能稳定、流程设备紧凑等优势,近年来已经成为国内外相关学者的研究热点,具有较好的发展前景。

二氧化碳储能技术的发展趋势将以解决高压储存设备依赖、关键涡轮机械设备开发和“源-网-荷-储”多场景应用为导向,结合CCUS和CO 2 工质化利用技术进步,逐步实现从概念设计,到实验验证,再到工程示范,最后实现技术的应用推广。因此,结合高温热能储存利用的TE-CES系统、地质封存储库的TC-CES系统以及LCES系统将成为二氧化碳储能技术的重要发展方向。在技术研发上,将主要集中在电动、气动、热动等系统复杂动态过程设计和机制研究、高参数旋转叶轮机械动力学设计、开发以及系统集成控制等方面。在面向多场景应用方面,一是“新能源+储能”模式,根据可再生能源出力禀赋实现并网匹配及持续、稳定清洁电力输出;二是大型电网辅助模式,参与电网调峰、调频、调相、黑启动、旋转备用、多能联供等场景,维护地区供电稳定,提高电网鲁棒性;三是用户侧微型电站模式,对于高电耗和高排放工业用户,建设微型CES系统,通过峰谷电价增加经济效益;四是能源互联网模式,充分发挥CES系统储能、储热、储冷特性,通过建立分布式能源站将化石能源、可再生能源、电能用户、冷热能用户等多品位能量单元统一管理,实现区域多能互补协同运行,促进新型能源利用体系发展。

5 结论

面对全球能源结构转型压力和大规模清洁物理储能技术应用的紧迫需求,二氧化碳储能(CES)技术是一种具备长时间、稳定、高效储能特性且行业吸引性高的新型清洁物理储能技术。本文介绍了典型CES系统的工作原理和主要性能评价指标,梳理了不同形式CES系统的研究和发展现状,探明了CES技术后期研究和应用面临的重点研究方向、关键技术和发展前景。

总体来说,目前针对二氧化碳储能技术的研究还处于理论设计和初步实验验证阶段。后续还需要进一步完善二氧化碳储能的基础研究,强化理论论证,积累系统整体设计和试验项目运行经验,并进一步明晰系统全局优化方法和动态运行机制,为二氧化碳储能技术的工程示范和产业化推广奠定基础。随着国内外学者的不断研究与创新,二氧化碳储能必将朝着高性能、低成本、规模化、多应用场景的方向发展,从而为未来以可再生能源为主的能源体系和多能源协同互补网络提供重要解决方案。

第一作者:郝佳豪(1998—),男,硕士研究生,研究方向为二氧化碳储能系统优化技术;

通讯作者:张振涛,博士,研究员,主要从事二氧化碳资源化利用装备研发及流程工艺优化方面研究。

相关链接

张华民:全钒液流电池的技术进展、不同储能时长系统的价格分析及展望

锂电储能系统热失控防控技术研究进展

钠离子电池储能技术及经济性分析

【END】

联盟官微

关注政策、项目、企业、市场活动

联盟官方小秘书

二氧化碳储能技术研究现状与发展前景

入会、入群、产业交流、活动对接

相关推荐:

网友留言:

我要评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。